Additive Operator Splitting Methods for Solving Systems of Nonlinear Finite Difference Equations
نویسنده
چکیده
There exists a considerably body of literature on the development, analysis and implementation of multiplicative and additive operator splitting methods for solving large and sparse systems of finite difference equations arising from the discretization of partial differential equations. In this note, we will review the Newton–Arithmetic Mean and the Modified Newton–Arithmetic Mean methods for solving nonlinear and weakly nonlinear systems of difference equations arising from the discretization of diffusion–convection problems.
منابع مشابه
Operator splitting methods for pricing American options under stochastic volatility
We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise const...
متن کاملExplicit-implicit Splitting Schemes for Some Systems of Evolutionary Equations
In many applied problems, the individual components of the unknown vector are interconnected and therefore splitting schemes are applied in order to get a simple problem for evaluating unknowns at a new time level. On the basis of additive schemes (splitting schemes), there are constructed efficient computational algorithms for numerical solving the initial value problems for systems of time-de...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملUnconditionally stable time splitting methods for the electrostatic analysis of solvated biomolecules
This work introduces novel unconditionally stable operator splitting methods for solving the time dependent nonlinear Poisson-Boltzmann (NPB) equation for the electrostatic analysis of solvated biomolecules. In a pseudo-transient continuation solution of the NPB equation, a long time integration is needed to reach the steady state. This calls for time stepping schemes that are stable and accura...
متن کاملTime stepping for vectorial operator splitting
We present a fully implicit finite difference method for the unsteady incompressible Navier–Stokes equations. It is based on the one-step θ-method for discretization in time and a special coordinate splitting (called vectorial operator splitting) for efficiently solving the nonlinear stationary problems for the solution at each new time level. The resulting system is solved in a fully coupled a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013